
This handout set will provide the background information that will be useful in working in
MATLAB. While it isn‟t my own creation, it hits the important stuff and (I thought) was pretty
well organized. SO, I‟ve annotated the heck out of them with the additional information that I‟d
include in a presentation, and am handing them out.

This handout doesn‟t go over language constructs like if-else-end or try-catch-end or loops.
Instead it discusses the fundamentals: how MATLAB manages and deals with numbers. This
is the core of MATLAB, and understanding this stuff will make your (programming) life easier.

Unfortunately, there‟s a huge gap between the amount of time I‟ll have in class and the
material that I‟d like to cover. When I start my MATLAB basics lecture, I‟ll take some questions
based on this handout, then transition into how you can get MATLAB bend to your will. I intend
to start with a (very) brief tour of the parts of the desktop environment that matter, then discuss
the writing of scripts, and then transition into the creation and juggling of functions.

Below several of the slides, in the notes section (like this one), you‟ll find a couple comments
as well as suggestions for things to try in MATLAB that might help clarify the concepts and
syntax.

I recommend starting MATLAB and trying the examples as you go. PLEASE ask me about
anything that needs clarification along the way. Frustration is your enemy when learning to
program, and I want us all to have been exposed to these fundamentals before I start my class
on Friday.

OK. Deep breath. Here we go.

1

If you‟d like more information about any command, simply type:

help command OR doc command for the command in question.

You‟ll find that the MATLAB help is more detailed and friendly than the MAN
pages (unix help) with which you may be familiar.

• in each example, >> is the MATLAB prompt, type in the stuff that comes after
it.

• comments in MATLAB start with the percent sign (%) and don‟t need to be
typed in

Examples of arrays and their representation.

>> a = [1 2 3]

>> b = [1 2 3]‟

>> c = [b (b * 2)]

>> d = „hello‟

>> whos %See the detail for these variables.

2

Examples of matrices of different sizes and dimensions

>> clear % clear out all variables in memory

>> a = [] % empty array

>> b = 1 % scalar

>> c = [1 2; 3 4] %2x2 matrix

>> c (2,2)

>> whos

Notice, that the variable “ans” contains the answer from c(2,2)

What‟s the difference between [] and ()?

- The square brackets are used when creating an array

- parenthesis either groups operations (like in regular math), or references to locations
within arrays.

>> a(5) % produces an error. You‟re trying to access something out of bounds

>> a(5) = 5 % put “5” into the fifth position of the empty matrix a.

>>a = [a 6]

3

4

An example of accessing an element of an array.

>> d = magic(4) % creates a 4x4 magic-square matrix.

>> d(2,3) % should give you 10

>> d(10) % see explanation below

Even though there are multiple dimensions, you can access any element with a single index number.
This is where it matters how MATLAB stores the values of its array.

Here‟s the array of interest, as displayed on the screen:

d=

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

Internally, the numbers are stored like this…

16 5 9 4 2 11 7 14 3 10 6 15 13 8 12 1

So, when I access the 10th element, it turns out to be the number 10, just the same as if I accessed Row
2, Col 3.

All elements can be accessed either by their row-column position or through their continuous index.

>> for col = 1: size(d,2); for row = 1:size(d,1); disp(d(row,col)); end; end

>>for idx = 1 : numel(d); disp(d(idx)); end;

5

I‟ve been using simple variable names (A, B, c, etc.) in the examples, but that is their
values don‟t have any specific meaning.

In a program where the variable actually MEANS something, it behooves you to give
it a name that will mean something, too.

Which variable name would be the easiest to decipher later on??

- x

- s1

- sig1

--sigma1

-majorPrincipalStress

In some situations, a variable is created and then used right away – ten times in the
very next equation, and then never seen again. Then, maybe, it makes sense to use
a shorter version.

In general, the more abstract a variable name is, the fewer lines of code should use it.
Geophysics, for example, has a notorious number of uses for “sigma”, so you‟re only
asking for trouble by declaring a sigma somewhere, and then hoping it will be
understood (or have the expected value) a couple hundred lines of code later.

6

Examples of converting one type to another

>> clear

>> a = 75.3

>> b = int32(a)

>> d = char(a)

>> c = logical(a)

Matlab handles these pretty well… but how about these…

>> x = char(-1) % characters are generally represented with values from 1

to 255…

>> x = logical(nan)

7

OK, so a semicolon actually has two uses:

1. At the end of a MATLAB command, it will suppress the echoing of values.

2. Within the [] of a matrix, where it says “what follows is on the next row”

8

These are the same:

>> A = [1 2 3; 4 5 6]

And

>> A = [1 2 3

4 5 6]

(yes, that was supposed to be on two lines…)

9

These are the same:

>> 1 : 10

>> 1 : 1 : 10

You can go from high-number to low, too:

>> 10 : -1 : 1

What does this one do?

>> 1 : -1 : 10

Also, you can force any array into a column by using the colon operator.

>>A = [1 2 3; 4 5 6]

>> A(:)

Or into a row with the colon and transpose operators…

>> A(:)‟

>> B = 1 : 1e6 % one to a million.

oops. Forgot to suppress the output.

When you get tired of scrolling numbers, hit ctrl-C to stop it.

>> B = 1: 1e6; % the semicolon suppresses output, so this assignment is nearly instantaneous.

10

These functions all create arrays of values that should be self-explanatory,

except for eye().

>> help eye

When you give each of these functions a single argument, such as ones(n),

then MATLAB will create an n x n array.

11

12

Using the example above:

>>C(:,:,1) = [1 2 3; 4 5 6];

>>C(:,:,2) = [7 8 9; 10 11 12];

>>disp(C)

>>disp(C(:));

What do these show?

>> size(C)

>> numel(C)

>> length(C)

13

14

Examples of end in use

>> A = magic(3)

>> A(end)

>> A (1, end)

Subtract one row from another

>>A(2,:) – A(1,:)

This will find the differences between the columns

>> A(:,2:end) – A(:,1:end-1)

15

16

17

18

19

What‟s the difference between disp and display?

>> A = „oy‟

>> disp(A)

>> display(A)

20

>> lookfor 2str

21

The new line character is like pressing “return”; the subsequent characters

start being displayed at the beginning of the next line below.

22

Additional examples, using sprintf

>> s = sprintf(„Hello\nThere\n‟)

>> s = sprintf(„#[%d], month [%02d], change[%+d]‟ , 5, 5, 5)

23

24

25

26

27

Debugging could easily be a couple class sessions.

First of all, you can get a list of debugging instructions by typing:

>> help debug

If you‟re getting strange runtime errors, you could type:

>> dbstop if error

before running your program.

This will cause matlab to stop at any instruction that causes an error. A new

debug prompt will show:

K>>

At this moment, you‟re seeing all variables with the values as they were right

before the error happened. You can look to see if some variable is incorrect.

Debugging will be talked about more in the I/O class.

28

Interested in finding out what functions deal with, oh, distance, for example?

>> lookfor distance

29

