
Beyond the Mouse – A
Short Course on

Programming
10a. Backup and Debugging

Solving Major (and minor) Crises

Ronni Grapenthin

Geophysical Institute, University of Alaska
Fairbanks

November 13, 2011 “The Uncomfortable Truths Well”,
http://xkcd.com/568 (April 13, 2009)

1 / 11

Today’s schedule . . .

1 Backup Strategies

2 Debugging

2 / 11

What is a backup?

Backup, backup!
Creating a copy of something that must never get lost.
data, results, settings, figures, writing (YOUR THESIS), . . .
. . . because hard drives sometimes die, laptops get lost, houses
burn down, etc.

General strategies

Episodically create a physical copy on a medium different from
primary hard drive (e.g. usb drive).
Use one of the gazillion tools that help you with this.
Whatever method you choose, make sure the files can indeed be
recovered (i.e. test the backup)

3 / 11

What is a backup?

Backup, backup!
Creating a copy of something that must never get lost.
data, results, settings, figures, writing (YOUR THESIS), . . .
. . . because hard drives sometimes die, laptops get lost, houses
burn down, etc.

General strategies
Episodically create a physical copy on a medium different from
primary hard drive (e.g. usb drive).

Use one of the gazillion tools that help you with this.
Whatever method you choose, make sure the files can indeed be
recovered (i.e. test the backup)

3 / 11

What is a backup?

Backup, backup!
Creating a copy of something that must never get lost.
data, results, settings, figures, writing (YOUR THESIS), . . .
. . . because hard drives sometimes die, laptops get lost, houses
burn down, etc.

General strategies
Episodically create a physical copy on a medium different from
primary hard drive (e.g. usb drive).
Use one of the gazillion tools that help you with this.

Whatever method you choose, make sure the files can indeed be
recovered (i.e. test the backup)

3 / 11

What is a backup?

Backup, backup!
Creating a copy of something that must never get lost.
data, results, settings, figures, writing (YOUR THESIS), . . .
. . . because hard drives sometimes die, laptops get lost, houses
burn down, etc.

General strategies
Episodically create a physical copy on a medium different from
primary hard drive (e.g. usb drive).
Use one of the gazillion tools that help you with this.

Whatever method you choose, make sure the files can indeed be
recovered (i.e. test the backup)

3 / 11

What is a backup?

Backup, backup!
Creating a copy of something that must never get lost.
data, results, settings, figures, writing (YOUR THESIS), . . .
. . . because hard drives sometimes die, laptops get lost, houses
burn down, etc.

General strategies
Episodically create a physical copy on a medium different from
primary hard drive (e.g. usb drive).
Use one of the gazillion tools that help you with this.
Whatever method you choose, make sure the files can indeed be
recovered (i.e. test the backup)

3 / 11

Review: Software Development Cycle

1 Design
2 Coding
3 Test
4 Debugging
5 go back to 1,2, or 3, . . .

4 / 11

What is “debugging”?

Debugging is the art of finding and fixing mistakes in computer
programs. To be successful you need insight, creativity, logic, and
determination.

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.

Brian Kernighan

5 / 11

What is “debugging”?

Debugging is the art of finding and fixing mistakes in computer
programs. To be successful you need insight, creativity, logic, and
determination.

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.

Brian Kernighan

5 / 11

Truths about bugs and debugging . . .

Bugs are static – they won’t run away.
Often, the problem is simple.
You created the bug! It’s nobody else’s fault - suck it up!
Debugging is a great way to learn being self-critical. Good luck!
Be critical – did you mean ’<’, ’<=’, ’>’, ’>=’?
Don’t panic – be systematic!
Sleep, go for a walk, come back later.

6 / 11

Debugging Styles

echoing: place print statements at useful points in a program
(function entry, exit)
unit testing: write calls to particular function, throw artificial
values at it
exception handling: in high level languages: sources of mistakes
easier to spot
online debuggers: for our purposes not necessary, useful if you
want to step through your code, or for memory problems
version control: have a tool keep track of changes you make; roll
back to bug-free code is simple (not covered here)

7 / 11

Debugging Styles: echoing

. . . we find stepping through a program less productive than
thinking harder and adding output statements and
self-checking code at critical places. Clicking over
statements takes longer than scanning the output of
judiciously-placed displays. It takes less time to decide where
to put print statements than to single-step to the critical
section of code, even assuming we know where that is. More
important, debugging statements stay with the program;
debugging sessions are transient.

From: Brian Kernighan, Rob Pike “The Practice of Programming”

write method that displays text only if a global DEBUG flag is set
find ways to implement such external switches – for SHELL:
environment vars, Matlab: create your own preferences
call this method whenever necessary: entry, exit of functions, to
display certain values, to follow the program flow, . . .

8 / 11

Debugging Styles: echoing

. . . we find stepping through a program less productive than
thinking harder and adding output statements and
self-checking code at critical places. Clicking over
statements takes longer than scanning the output of
judiciously-placed displays. It takes less time to decide where
to put print statements than to single-step to the critical
section of code, even assuming we know where that is. More
important, debugging statements stay with the program;
debugging sessions are transient.

From: Brian Kernighan, Rob Pike “The Practice of Programming”

write method that displays text only if a global DEBUG flag is set
find ways to implement such external switches – for SHELL:
environment vars, Matlab: create your own preferences
call this method whenever necessary: entry, exit of functions, to
display certain values, to follow the program flow, . . .

8 / 11

Debugging Styles: echoing

. . . see t_debug demo . . .

9 / 11

Debugging Styles: unit testing

at the simplest: write calls to your functions with artificial values
execute these calls at the beginning of your code, check function
results
this helps to detect errors due to changes in functions immediately
also: assertion that function works for tested TYPES
can be done for any language (some languages come with fancy
frameworks)

10 / 11

Debugging Styles: exception handling

Full exception handling support in Matlab:

Matlab – try-catch

% t ry , STATEMENT, catch ME, STATEMENT, end .
% EXAMPLE: f i l e opening
clc ;
t r y

f i d = fopen (’ whatever . t x t ’ , ’ r ’) ; % open a non−e x i s t i n g f i l e
data = fread (f i d) ; % now t r y to get i t s data
fclose (f i d)

catch myException % def ine any name f o r an e r r o r message ob jec t
%l e t the user know , implement g race fu l program te rm ina t i on . . . w r i t e to s t d e r r o r
f p r i n t f (1 , ’ ??? Er ro r using ==> f read \ n \ n ’) % recrea te Matlab e r r o r message
f p r i n t f (1 , ’%s \ n ’ , myException . message) ; % actua l message from e r r o r message ob jec t
f p r i n t f (1 , ’ E r ro r i n ==> %s at %d \ n \ n \ n ’ , . . . % where d id th ings occur?

myException . s tack . name, myException . s tack . l i ne) ;

f p r i n t f (1 , ’ Simpler : \ n ’) % use i n t e r n a l f u n c t i o n to get Matlab
f p r i n t f (1 , ’%s \ n ’ , getReport (myException)) ; % s t y l e r e p o r t

end

disp (’−−−−−−−> We do get here ! ’) , pause

%now wi thou t t r y−catch . . .
f i d = fopen (’ whatever . t x t ’ , ’ r ’) ;
data = fread (f i d) ;

disp (’We cannot get here ! ’) % We’ l l on ly make i t here i f ’ whatever . t x t ’ e x i s t s !

11 / 11

	Backup Strategies
	Debugging

