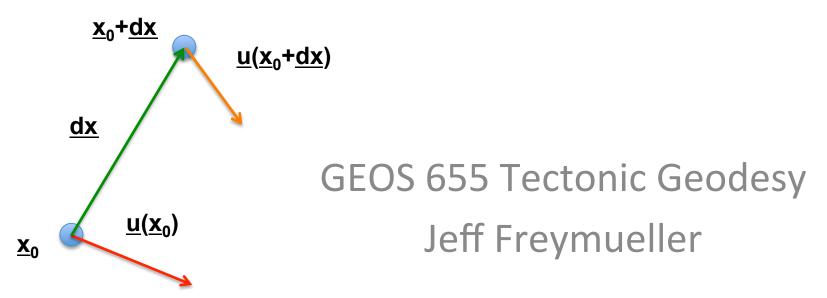
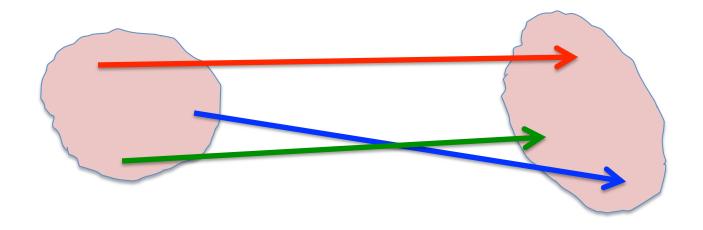
Lecture 12: Coordinates, Transformations, vectors, displacements, strains



Outline

- Coordinates and Transformations
 - The mathematical basis for the problem
 - In particular, how to do rotations
- Motions in general
 - displacement = rigid body motion + deformation
 - displacement = translation + rotation + deformation
- Deformation = strain

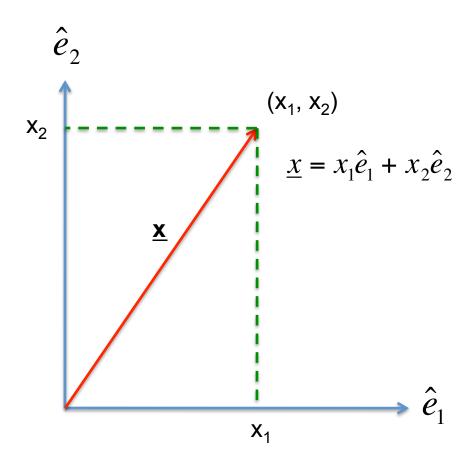
Motion in General



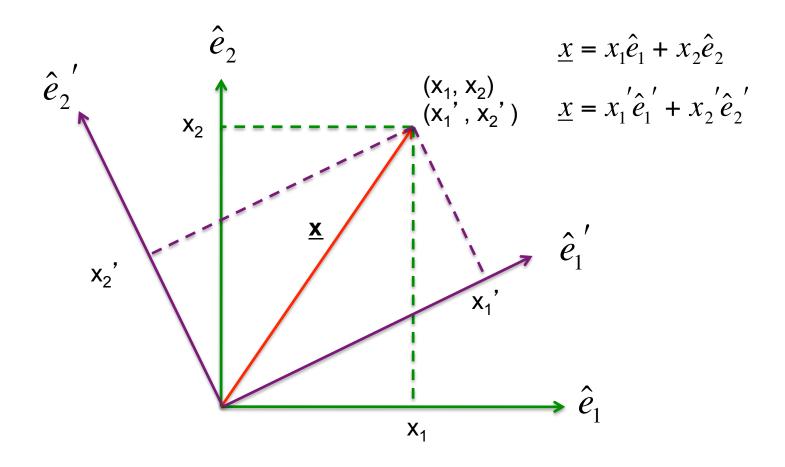
- displacement = rigid body motion + deformation
- displacement = translation + rotation + deformation

Coordinates and Vectors (in 2D)

- Given a point and coordinate axes, we can define a pair of coordinates that locate the point.
 - Vector may be a physical thing
 - Coordinates represent the vector
 - Imagine a vector that points
 from the center of the earth to
 a point on the surface. If we
 change coordinate systems, the
 vector still points to the same
 place, but the coordinates or
 vector components will be
 different.



Same Vector, Different Coordinates



Mathematically, we often blur the distinction between the vector and its representation.

Many Different Vector Notations

$$\underline{x} = \begin{pmatrix} x_1, x_2, x_3 \end{pmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 column vector

 This leads to a variety of notations for vector operations, for example the dot product:

$$\underline{x} \cdot \underline{y} = x_1 y_1 + x_2 y_2 + x_3 y_3$$

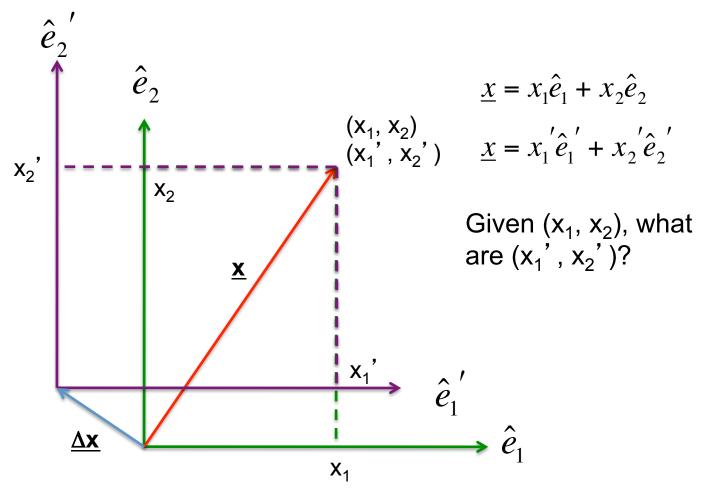
$$= \sum_{i=1}^{3} x_i y_i$$
 "Einstein convention": summation over repeated indices
$$= \underline{x}^T \underline{y}$$

$$= [x_1 \quad x_2 \quad x_3] \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Transformations

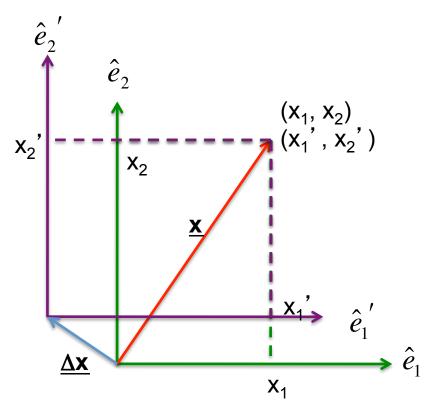
- Mathematical *transformations* map something from one system (or set) to another
 - For example, transform the coordinates of a vector from one coordinate system to another
 - A general form: $\mathbf{y} = T\mathbf{x}$
- Linear transformations are part of the basis of *linear* algebra.
 - A mathematician would say that a transformation is a mapping from one "space" to another.
- We can represent linear transformations in a variety of ways, but the two most common are a matrix representation or using index notation

Translational Transformations



In this case the unit vectors describing the coordinate system are the same, only the origin of the system is different.

Translational Transformations



This is pretty easy:

$$x_1' = x_1 - \Delta x_1$$

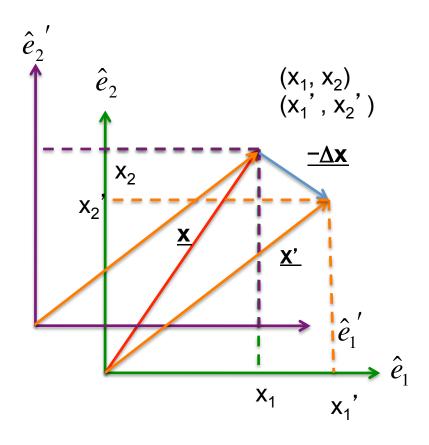
$$x_2' = x_2 - \Delta x_2$$

$$\underline{x} = x_1 \hat{e}_1 + x_2 \hat{e}_2$$

$$\underline{x} = x_1' \hat{e}_1' + x_2' \hat{e}_2'$$

Given (x_1, x_2) , what are (x_1', x_2') ?

Translational Transformations



$$\underline{x} = x_1 \hat{e}_1 + x_2 \hat{e}_2$$

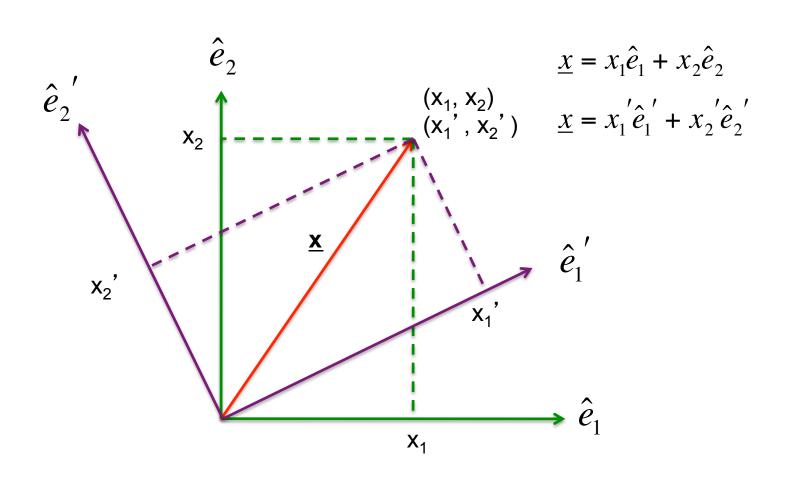
$$\underline{x'} = x_1' \hat{e}_1' + x_2' \hat{e}_2'$$

$$x_{1}' = x_{1} - \Delta x_{1}$$

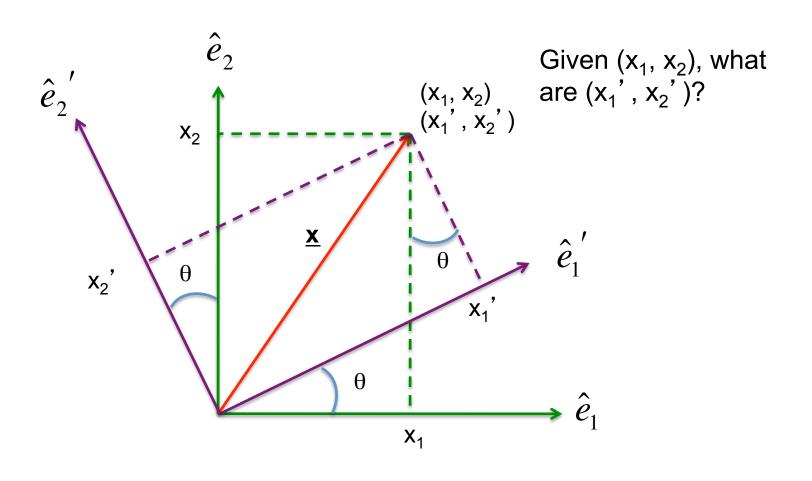
$$x_{2}' = x_{2} - \Delta x_{2}$$

This vector $\underline{\mathbf{x}}$ is also given by $\underline{\mathbf{x}}' = \underline{\mathbf{x}} - \underline{\Delta}\underline{\mathbf{x}}$ Translating the coordinate system by $\underline{\Delta}\underline{\mathbf{x}}$ is like subtracting $\underline{\Delta}\underline{\mathbf{x}}$ from the vector.

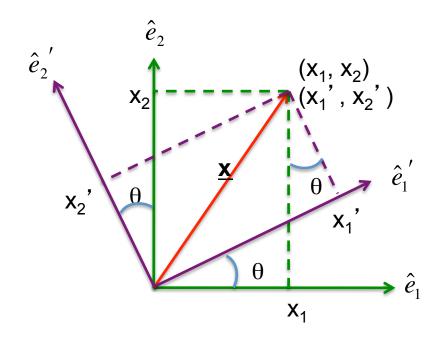
Rotational Transformations



Given two systems, how are the components of a vector related?



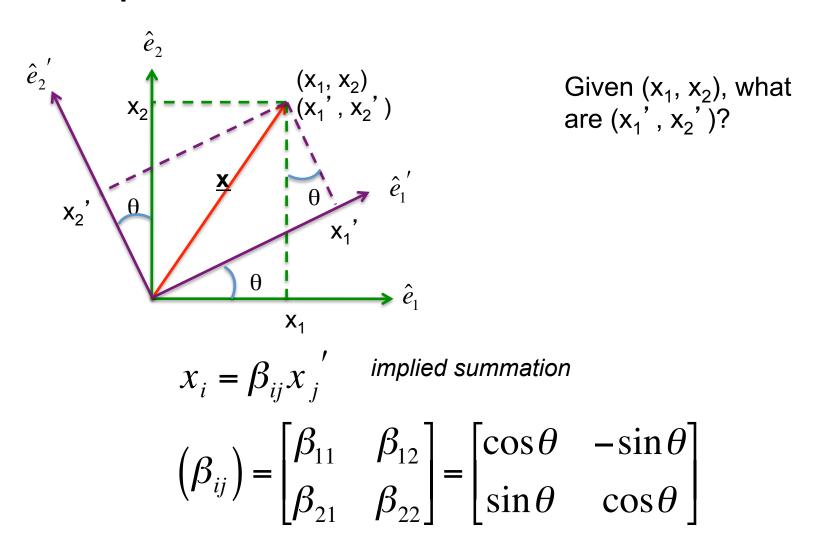
Given two systems, how are the components of a vector related?



Given (x_1, x_2) , what are (x_1', x_2') ?

$$x_1 = x_1' \cos \theta - x_2' \sin \theta$$
 $x_1' = x_1 \cos \theta + x_2 \sin \theta$
 $x_2 = x_1' \sin \theta + x_2' \cos \theta$ $x_2' = -x_1 \sin \theta + x_2 \cos \theta$

Given two systems, how are the components of a vector related?



Transformation and Inverse

 The matrix of the betas is the rotation matrix, which maps coordinates in the primed system into coordinates in the unprimed system:

$$x_i = \beta_{ij} x_j'$$

• The *inverse transformation* (opposite rotation) goes the other way, from the unprimed to the primed system $x_i' = \beta_{ii} x_i = \beta_{ki} x_k$

$$(\beta_{ji}) = (\beta_{ij})^T = \begin{bmatrix} \beta_{11} & \beta_{21} \\ \beta_{12} & \beta_{22} \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

Transformation and Inverse

Combining the two equations:

$$\begin{aligned} x_{i} &= \beta_{ji} x_{j}^{\ \prime} = \beta_{ji} \left(\beta_{jk} x_{k}\right) = \left(\beta_{ji} \cdot \beta_{jk}\right) x_{k} \\ \left(\beta_{ji} \cdot \beta_{jk}\right) &= \delta_{ik} \\ \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} &= \begin{bmatrix} \beta_{11} & \beta_{21} \\ \beta_{12} & \beta_{22} \end{bmatrix} \cdot \begin{bmatrix} x_{1}^{\ \prime} \\ x_{2}^{\ \prime} \end{bmatrix} \\ \text{matrix form} &\longrightarrow \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} &= \begin{bmatrix} \beta_{11} & \beta_{21} \\ \beta_{12} & \beta_{22} \end{bmatrix} \cdot \left(\begin{bmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}\right) \\ \begin{bmatrix} \beta_{11} & \beta_{21} \\ \beta_{12} & \beta_{22} \end{bmatrix} \cdot \begin{bmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{bmatrix} &= I \end{aligned}$$

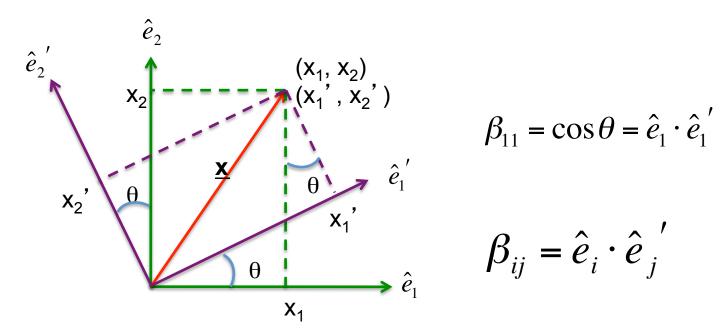
Transformation and Inverse

The transpose of the rotation matrix is its inverse.

$$\begin{bmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{bmatrix}^T = \begin{bmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{bmatrix}^{-1}$$

- This kind of matrix is called an orthogonal matrix.
- Rotational transformations preserve length
 - The length of the vector is the same in both coordinate systems.
 - Other kinds of linear transformations can be done that do not preserve length.

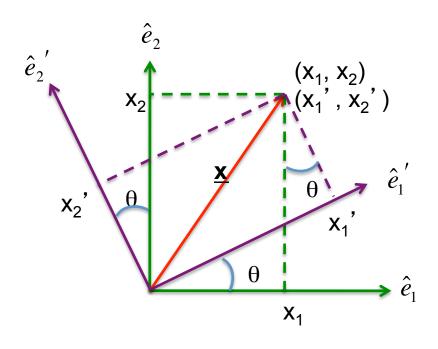
Geometric Relationships



- The betas have an easy geometric interpretation
 - Sometimes called direction cosines

$$(\beta_{ij}) = \begin{bmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Geometric Relationships



$$\underline{x} = x_j \hat{e}_j = x_j' \hat{e}_j'$$

 Take the dot product of both sides with e_i

$$(x_{j}\hat{e}_{j})\cdot\hat{e}_{i} = (x_{j}'\hat{e}_{j}')\cdot\hat{e}_{i}$$

$$x_{j}(\hat{e}_{j}\cdot\hat{e}_{i}) = x_{j}'(\hat{e}_{j}'\cdot\hat{e}_{i})$$

$$\delta_{ij}x_{j} = (\hat{e}_{i}\cdot\hat{e}_{j}')x_{j}'$$

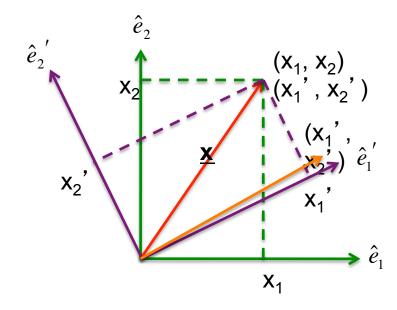
$$x_{i} = (\hat{e}_{i}\cdot\hat{e}_{j}')x_{j}' = \beta_{ij}x_{j}'$$

Rotating Cooordinate System vs. Rotating the Vector

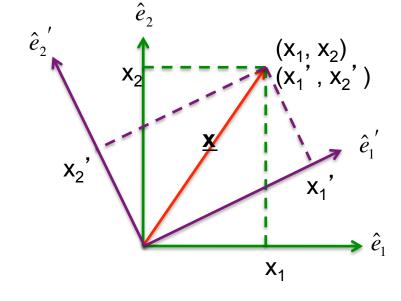
Rotating a vector is the same as rotating the coordinate system in the opposite direction

$$\underline{x} = x_1 \hat{e}_1 + x_2 \hat{e}_2$$

$$\underline{x} = x_1' \hat{e}_1' + x_2' \hat{e}_2'$$

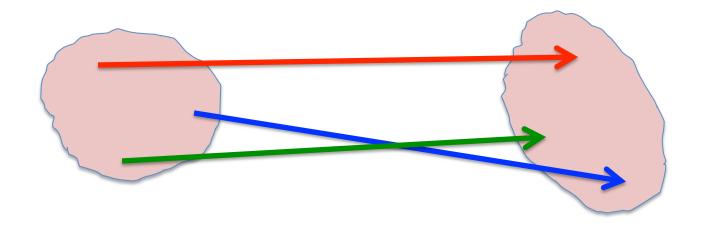


Clockwise rotation of vector



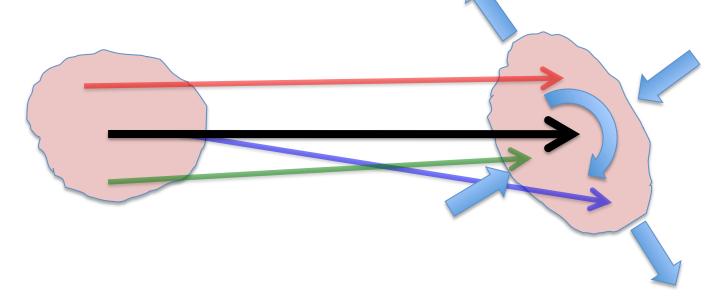
Counter-clockwise rotation of coordinate system

Motion in General



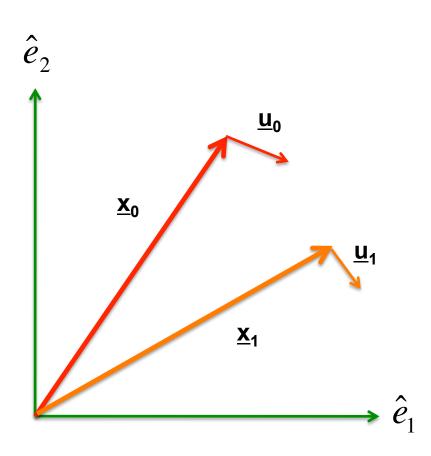
- displacement = rigid body motion + deformation
- displacement = translation + rotation + deformation

Motion in General



- displacement = rigid body motion + deformation
- displacement = translation + rotation + deformation

Displacement



- Every point has some displacement
- $\underline{\mathbf{u}}(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3) = \underline{\mathbf{u}}(\underline{\mathbf{x}})$
- How do we differentiate between rigid motion and deformation?
 - Consider the motion of neighboring points

Displacement

 $\frac{\mathbf{x}_0 + \mathbf{dx}}{\mathbf{u}(\mathbf{x}_0 + \mathbf{dx})}$ $u_i(\mathbf{x}_0)$ $u_i(\mathbf{x}_0)$ $u_i(\mathbf{x}_0)$

 Use a Taylor Series expansion to relate the two displacements:

$$u_i\left(\underline{x_0} + \underline{dx}\right) = u_i\left(\underline{x_0}\right) + \left(\frac{\partial u_i}{\partial x_j}\right)_{x = x_0} dx_j + \cdots$$

$$u_i\left(\underline{x_0} + \underline{dx}\right) = u_i\left(\underline{x_0}\right) + \left(\frac{\partial u_i}{\partial x_1}\right) dx_1 + \left(\frac{\partial u_i}{\partial x_2}\right) dx_2 + \left(\frac{\partial u_i}{\partial x_3}\right) dx_3$$

This is a set of 3 equations, for i = 1, 2, 3

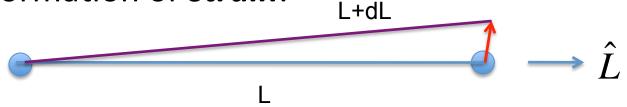
First term: translation

Remaining terms: rotation + strain

There are 9 values (du_i/dx_i) (i=1,3; j=1,3)

First a More Physical Point of View

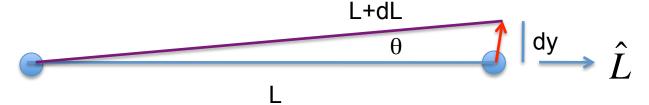
• Let's first look at strain from the point of view of line length. We already know that rotations don't change line lengths, so any line length change comes from deformation or **strain**.



- If one point is displaced relative to another, the line length between them changes from L to L+dL
 - Assume dL << L (for tectonics: L~km, dL~cm)</p>
- Define the strain in the direction of the line to be the fractional change in length, or strain $\varepsilon_{II} = (dL/L)$

Shear Strains

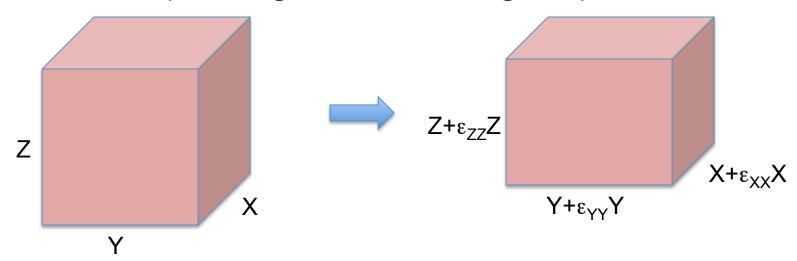
• Strains have direction. In the sketch there may also be a strain in the direction orthogonal to the line, but from this sketch we can't tell if it is deformation or rotation. If we assume no rotation,



- Define the *shear strain* to be the displacement in the orthogonal direction divided by the length, or strain $\varepsilon_{shear} = (dy/L) = \tan\theta \approx 0$
- There is a better definition of the shear strain, which we will come to in a little bit.

Dilatation

• Imagine a box that is compressed or extended equally in all dimensions (in the figure, the ε are negative):



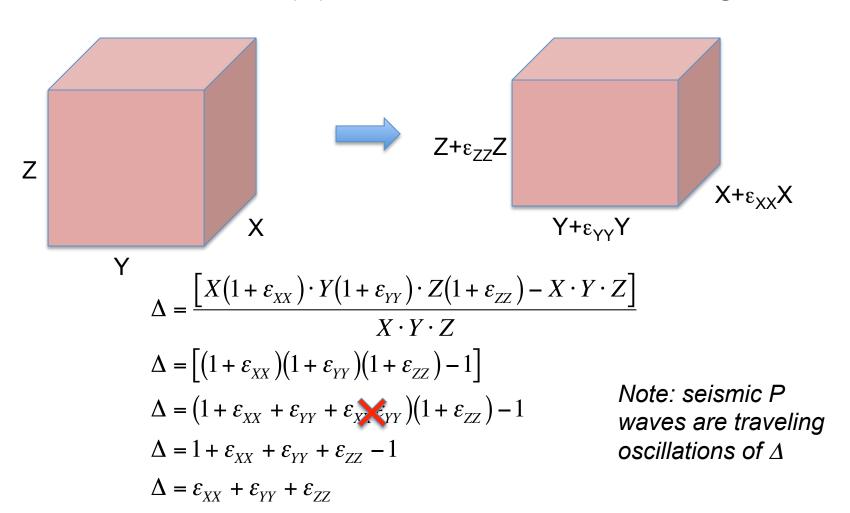
- The length changes (axial strains) in the x,y,z directions are
- X: $dL/L = \varepsilon_{XX}$
- Y: $dL/L = \varepsilon_{YY}$
- Z: $dL/L = \varepsilon_{ZZ}$

Note: positive = extension

Geologists often use positive = contraction

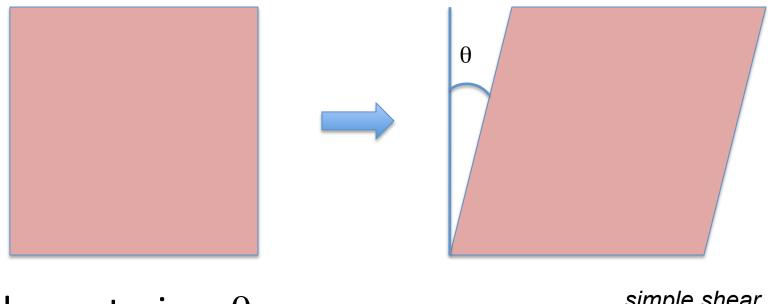
Dilatation

• Define the dilatation (Δ) as the fractional volume change



Shear Strain

 Shear deformation is also very common. Define the shear strain in terms of the angle change of a side:

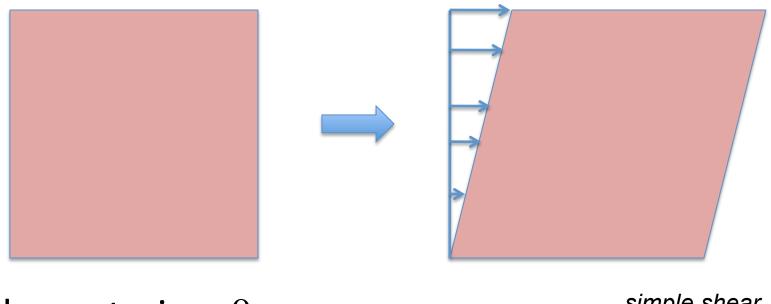


• Shear strain = θ

simple shear

Shear Strain

Shear deformation is also very common.
 Define the shear strain in terms of the angle change of a side:

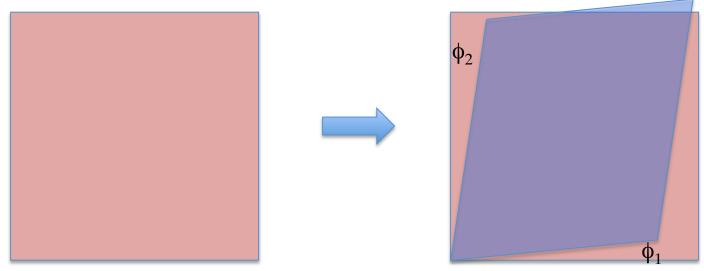


• Shear strain = θ

simple shear

Shear Strain

• A bit more generally:



- Shear strain = $\phi_1 + \phi_2$
- If $\phi_1 = \phi_2$, then the strain is *pure shear*
- Simple shear and pure shear differ only by a rigid rotation

Displacement

 $\frac{\mathbf{x}_0 + \mathbf{dx}}{\mathbf{u}(\mathbf{x}_0 + \mathbf{dx})}$ $u_i(\mathbf{x}_0)$ $u_i(\mathbf{x}_0)$ $u_i(\mathbf{x}_0)$

 Use a Taylor Series expansion to relate the two displacements:

$$u_i\left(\underline{x_0} + \underline{dx}\right) = u_i\left(\underline{x_0}\right) + \left(\frac{\partial u_i}{\partial x_j}\right)_{x = x_0} dx_j + \cdots$$

$$u_i\left(\underline{x_0} + \underline{dx}\right) = u_i\left(\underline{x_0}\right) + \left(\frac{\partial u_i}{\partial x_1}\right) dx_1 + \left(\frac{\partial u_i}{\partial x_2}\right) dx_2 + \left(\frac{\partial u_i}{\partial x_3}\right) dx_3$$

This is a set of 3 equations, for i = 1, 2, 3

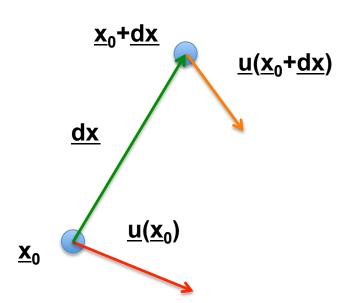
First term: translation

Remaining terms: rotation + strain

There are 9 values (du_i/dx_i) (i=1,3; j=1,3)

Displacement Gradient Tensor

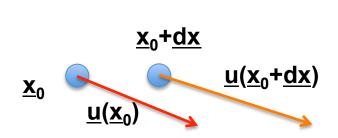
 These 9 values describe the deformation (strain) and rotation together:



$\int \underline{\partial u_1}$	∂u_1	∂u_1
∂x_1	∂x_2	∂x_3
∂u_2	∂u_2	∂u_2
∂x_1	$\overline{\partial x_2}$	$\overline{\partial x_3}$
∂u_3	∂u_3	∂u_3
$\overline{\partial x_1}$	$\overline{\partial x_2}$	$\overline{\partial x_3}$

Extension in e₁ direction

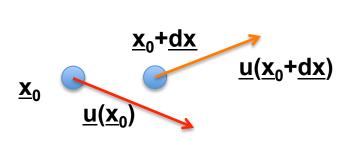
 These 9 values describe the deformation (strain) and rotation together:



$\int \underline{\partial u_1}$	∂u_1	∂u_1
∂x_1	∂x_2	∂x_3
$\frac{\partial u_2}{\partial x_2}$	∂u_2	∂u_2
∂x_1	∂x_2	∂x_3
$\frac{\partial u_3}{\partial x_3}$	∂u_3	∂u_3
∂x_1	$\overline{\partial x_2}$	$\overline{\partial x_3}$

Shear in e₂ direction

 These 9 values describe the deformation (strain) and rotation together:



$\frac{\partial y_1}{\partial x_1}$	∂u_1	∂u_1
∂x_1	∂x_2	∂x_3
∂u_2	∂u_2	∂u_2
∂x_1	$\overline{\partial x_2}$	$\overline{\partial x_3}$
$\frac{\partial u_3}{\partial x_3}$	∂u_3^-	∂u_3
∂x_1	$\overline{\partial x_2}$	$\overline{\partial x_3}$

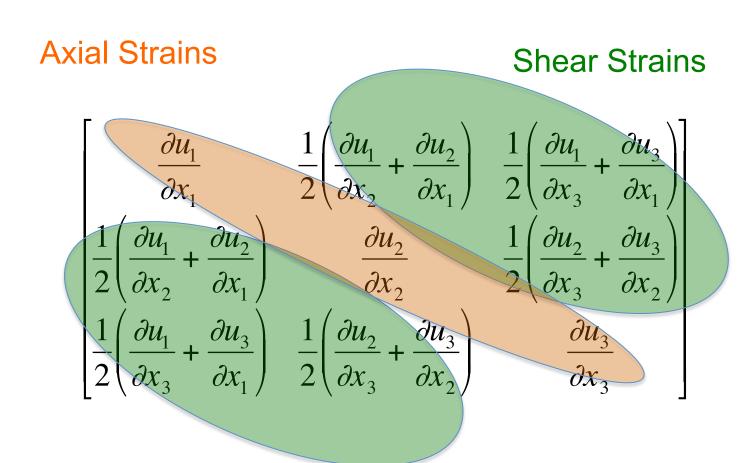
Separating Rotation and Strain

 We can define this to be the sum of two tensors, a strain tensor and a rotation tensor. The rotation part will be anti-symmetric (remember the rotation matrix), and the strain part will be symmetric:

$$u_i\left(\underline{x_0} + \underline{dx}\right) = u_i\left(\underline{x_0}\right) + \frac{1}{2}\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right) dx_j + \frac{1}{2}\left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i}\right) dx_j$$

$$\begin{bmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} & \frac{\partial u_1}{\partial x_3} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \frac{\partial u_2}{\partial x_3} \\ \frac{\partial u_3}{\partial x_1} & \frac{\partial u_3}{\partial x_2} & \frac{\partial u_3}{\partial x_3} \end{bmatrix} = \begin{bmatrix} \frac{\partial u_1}{\partial x_1} & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \right) & \frac{\partial u_2}{\partial x_2} & \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_2} \right) \\ \frac{1}{2} \left(\frac{\partial u_3}{\partial x_3} + \frac{\partial u_3}{\partial x_3} \right) & \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_2} \right) \\ \frac{1}{2} \left(\frac{\partial u_3}{\partial x_3} + \frac{\partial u_3}{\partial x_3} \right) & \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_2} \right) \\ \frac{1}{2} \left(\frac{\partial u_3}{\partial x_3} + \frac{\partial u_3}{\partial x_3} \right) & \frac{\partial u_3}{\partial x_3} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} - \frac{\partial u_2}{\partial x_1} \right) & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_2} \right) \\ \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} + \frac{\partial u_3}{\partial x_1} \right) & \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_2} \right) \\ \frac{1}{2} \left(\frac{\partial u_3}{\partial x_1} - \frac{\partial u_1}{\partial x_3} \right) & \frac{1}{2} \left(\frac{\partial u_3}{\partial x_2} - \frac{\partial u_3}{\partial x_2} \right) \\ \frac{1}{2} \left(\frac{\partial u_3}{\partial x_1} - \frac{\partial u_3}{\partial x_2} \right) & \frac{\partial u_3}{\partial x_3} \end{bmatrix}$$

Strain Tensor



Rotation Tensor

$$\begin{bmatrix} 0 & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} - \frac{\partial u_2}{\partial x_1} \right) & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1} \right) \\ \frac{1}{2} \left(\frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2} \right) & 0 & \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} - \frac{\partial u_3}{\partial x_2} \right) \\ \frac{1}{2} \left(\frac{\partial u_3}{\partial x_1} - \frac{\partial u_1}{\partial x_3} \right) & \frac{1}{2} \left(\frac{\partial u_3}{\partial x_2} - \frac{\partial u_2}{\partial x_3} \right) & 0 \end{bmatrix}$$

In terms of our earlier coordinate rotation matrix:

$$\begin{bmatrix} 0 & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} - \frac{\partial u_2}{\partial x_1} \right) & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1} \right) \\ \frac{1}{2} \left(\frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2} \right) & 0 & \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} - \frac{\partial u_3}{\partial x_2} \right) \\ \frac{1}{2} \left(\frac{\partial u_3}{\partial x_1} - \frac{\partial u_1}{\partial x_3} \right) & \frac{1}{2} \left(\frac{\partial u_3}{\partial x_2} - \frac{\partial u_2}{\partial x_3} \right) & 0 \end{bmatrix} = (\beta_{ij}) \underline{x} - \underline{x}$$