Problem Set #2

1. The earth formed by accretion of matter over a period of time, driven by gravitational attraction. We will solve a (very) simplified version of the problem to determine how hot the proto-Earth was when it reached its full size. We will assume point masses for everything, no radiation of heat energy, and no loss of mass through ejecta.

 a. Assume a particle moves inward toward the proto-Earth, which has radius a and uniform density ρ. Assuming no atmospheric or other drag forces, and assuming the particle was at rest initially, calculate its velocity on impact. (Hint: Assume that kinetic + potential energy = 0, so that at impact the kinetic energy = -U).

 b. Calculate the total energy of accretion, assuming that no heat is radiated, and no material is ejected by impacts.

 c. Calculate the increase in temperature caused by accretion, assuming

 \[\Delta T = \frac{(\text{energy/mass})}{(\text{energy/mass} \cdot ^\circ C)} \], where \((\text{energy/mass} \cdot ^\circ C) = 840 \, \text{J kg}^{-1} \, ^\circ \text{C}^{-1}\)

2. Calculate the potential and gravitational field inside and outside a thin spherical shell of radius a, and uniform surface density σ (surface density σ in units of mass/length2).

3. Calculate the potential and gravitational field everywhere for a thick-walled shell (inner radius a_1 and outer radius a_2). Sketch the potential and gravitational field as a function of radius.

5. Do problem 5-7 in Turcotte and Schubert.

7. Do Problem 5-11 in Turcotte and Schubert.